Search results for "moment of inertia"
showing 10 items of 45 documents
A General Mathematical Formulation for the Determination of Differential Leakage Factors in Electrical Machines with Symmetrical and Asymmetrical Ful…
2018
This paper presents a simple and general mathematical formulation for the determination of the differential leakage factor for both symmetrical and asymmetrical full and dead-coil windings of electrical machines. The method can be applied to all multiphase windings and considers Gorges polygons in conjunction with masses geometry in order to find an easy and affordable way to compute the differential leakage factor, avoiding the adoption of traditional methods that refer to the Ossanna's infinite series, which has to be obviously truncated under the bound of a predetermined accuracy. Moreover, the method described in this paper allows the easy determination of both the minimum and maximum v…
Determination of differential leakage factors in electrical machines with non-symmetrical full and dead-coil windings
2017
In this paper Gorges polygons are used in conjunction with masses geometry to find an easy and affordable way to compute the differential leakage factor of non symmetrical full and dead coil winding. By following the traditional way, the use of the Ossanna's infinite series which has to be obviously truncated under the bound of a predetermined accuracy is mandatory. In the presented method no infinite series is instead required. An example is then shown and discussed to demonstrate practically the effectiveness of the proposed method.
An exact method for the determination of differential leakage factors in electrical machines with non-symmetrical windings
2016
An exact and simple method for the determination of differential leakage factors in polyphase ac electrical machines with non-symmetrical windings is presented in this paper. The method relies on the properties of Gorges polygons that are used to transform an infinite series expressing the differential leakage factor into a finite sum in order to significantly simplify the calculations. Some examples are shown and discussed in order to practically demonstrate the effectiveness of the proposed method.
A Precessing Ferromagnetic Needle Magnetometer
2016
A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency $\Omega$ under conditions where its intrinsic spin dominates over its rotational angular momentum, $N\hbar \gg I\Omega$ ($I$ is the moment of inertia of the needle about the precession axis and $N$ is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin $N\hbar$ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of $N$ spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum unce…
Thouless-Valatin Rotational Moment of Inertia from the Linear Response Theory
2017
Spontaneous breaking of continuous symmetries of a nuclear many-body system results in appearance of zero-energy restoration modes. Such modes introduce a non-physical contributions to the physical excitations called spurious Nambu-Goldstone modes. Since they represent a special case of collective motion, they are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total angular momentum operator. We examine the role and effects of the pairing correlations on the rotational cha…
A second strain gradient elasticity theory with second velocity gradient inertia – Part II: Dynamic behavior
2013
Abstract This paper is the sequel of a companion Part I paper devoted to the constitutive equations and to the quasi-static behavior of a second strain gradient material model with second velocity gradient inertia. In the present Part II paper, a multi-cell homogenization procedure (developed in the Part I paper) is applied to a nonhomogeneous body modelled as a simple material cell system, in conjunction with the principle of virtual work (PVW) for inertial actions (i.e. momenta and inertia forces), which at the macro-scale level takes on the typical format as for a second velocity gradient inertia material model. The latter (macro-scale) PVW is used to determine the equilibrium equations …
Sodium bis(2-ethylhexyl)sulfosuccinate self-aggregation in vacuo: molecular dynamics simulation.
2010
Molecular dynamics (MD) simulations were conducted for systems in vacuo consisting of n AOT(-) anions (bis(2-ethylhexyl)sulfosuccinate ions) and n+/- 1 or n Na(+) ions up to n = 20. For n = 15, positively charged systems with Li(+), K(+), and Cs(+) cations were also considered. All systems were observed to form reverse micelle-like aggregates whose centre is occupied by cations and polar heads in a very compact solid-like way, while globally the aggregate has the form of an elongated and rather flat ellipsoid. Various types of statistical analyses were carried out on the systems to enlighten structural and dynamical properties including gyration radius, atomic pair correlation functions, at…
Refitting of an eco-friendly sailing yacht: numerical prediction and experimental validation
2016
A 4.60 m sailing yacht, made with a flax fiber composite and wood, has been refitted with the aim of hull weight reduction and performance improvement during regattas. The first objective was obtained with a lightening of internal hull reinforcements while the second one with a reduction of the maximum beam, in order to minimize the longitudinal moment of inertia. The refitting was first simulated via CAD-FEM interaction to establish the feasibility of the procedure and to verify the structural integrity. The resulting hull was then instrumented with strain gauges and tested under typical rigging and sailing conditions. Results obtained by the numerical modeling and measured from experiment…
Thouless-Valatin moment of inertia and removal of the spurious mode in the linear response theory
2020
Symmetry breaking at the mean-field level leads to an appearance of a symmetry restoring Nambu-Goldstone (NG) mode in the linear response theory. These modes represent a special kind of collective motion of the system. However, they can interfere with the calculated intrinsic physical excitations and, hence, they are often called as spurious modes. I discuss translational and rotational NG mode and the inertia parameter associated with these modes, by using the finite amplitude method formalism. I will also discuss how to remove spurious mode from the calculated transition strength function.
Equilibrium geometries of cyclic SiC3 isomers
2001
Equilibrium geometries of two isomers of cyclic SiC3 are determined by both large scale ab initio calculation and a procedure involving the use of experimental data from microwave spectroscopy and calculated harmonic and cubic force fields. Internuclear distances corresponding to structures obtained by both procedures agree to better than 0.003 A in all cases, allowing for precise recommendations of equilibrium structures. Rather large residual inertial defects obtained from moments of inertia based on rotational constants adjusted for effects of vibration–rotation interaction were found to be reduced significantly by inclusion of electronic contributions as estimated from calculations of r…